TECHNICKÁ PRAVIDLA

BEZPEČNOST A OCHRANA ZDRAVÍ V PLYNÁRENSTVÍ
PŘI PRÁCI V PROSTŘEDÍCH S NEBEZPEČÍM VÝBUCHU

SAFETY AND HEALTH PROTECTION OF WORKERS IN THE GAS INDUSTRY
POTENTIALLY AT RISK FROM EXPLOSIVE ATMOSPHERES

Schválena dne:
Registrace Hospodářské komory České republiky: HKCR/2/09/72
Realizace a vydání technických pravidel:

Český plynárenský svaz
vedený u Městského soudu v Praze
pod spisovou značkou L 1250

COPYRIGHT © ČPS,

Pořizování dotisků a kopii pravidel nebo jejich částí je dovoleno jen se souhlasem ČPS.
Tato technická pravidla, která vycházejí z praktických zkušeností, jsou návodem k optimální aplikaci nařízení vlády č. 406/2004 Sb. v praxi.

Použití těchto technických pravidel nevyužívá použití interních materiálů přepravní společností a distribučních společností v odvětví plynárenství v jejich místních podmínkách, pokud nejsou v přímém rozporu se zásadami bezpečnosti a ochrany zdraví při práci v prostředí s nebezpečím výbuchu.

NAHRAZENÍ PŘEDCHOZÍCH PŘEDPISŮ

Tato technická pravidla nahrazují TPG 925 01 schválená 22. 4. 2009.

Změny proti předchozím TPG

Technická pravidla byla aktualizována s ohledem na současný předpisový stav obecně závazných právních předpisů a českých technických norem. Pravidla nově uvádí maximální přípustné koncentrace hořlavé látky při různých činnostech prováděných v prostorech s nebezpečím výbuchu a upřesňují definice jednotlivých zón s nebezpečím výbuchu. Dále byly doplněny zásady pro používání přenosných elektrických/elektronických přístrojů v prostorech s nebezpečím výbuchu. Rovněž byly aktualizovány přílohy „Požárně technické charakteristiky zemního plynu a odorantů“, „Zásady pro stanovení zón na pracovištích“ a „Vzor Příkazu „V“.

Pravidla byla projednána s dotčenými orgány státní správy a organizacemi zabývajícími se danou problematikou.

V Praze dne
Tato pravidla platí od

Český plynárenský svaz
vedený u Městského soudu v Praze
pod spisovou značkou L 1250
OBSAH

1 Rozsah platnosti .. 5
2 Názvosloví .. 5
 2.1 Termíny a definice ... 5
 2.2 Zkratky a značky .. 6
3 Obecně .. 6
4 Určení pracovišť s nebezpečím výbuchu ... 7
5 Posuzování nebezpečí výbuchu .. 7
 5.1 Prostory s nebezpečím výbuchu .. 7
 5.2 Základní typy zdrojů iniciace ... 8
 5.3 Principy posouzení nebezpečí výbuchu .. 8
6 Prostory s nebezpečím výbuchu a požadavky na zařízení používané v těchto prostorech .. 8
 6.1 Zóny s nebezpečím výbuchu ... 8
 6.2 Zařízení do prostředí s nebezpečím výbuchu ... 9
 6.3 Zásady pro používání přenosných elektronických/elektrických zařízení 9
7 Ochrana před výbuchem .. 10
 7.1 Bezpečnostní principy .. 10
 7.2 Vyloučení pravděpodobnosti vzniku výbušné atmosféry ... 10
 7.3 Vyloučení zdrojů iniciace .. 12
 7.4 Ochranná opatření pro omezení nebezpečných účinků výbuchu 12
 7.5 Použití osobních ochranných pomůcek a prostředků v prostorech s nebezpečím výbuchu ... 12
 7.6 Školení zaměstnanců ... 12
 7.7 Údržba a opravy .. 12
 7.8 Koordinační povinnosti ... 12
 7.9 Značení prostorů s nebezpečím výbuchu ... 13
 7.10 Druhy ručního nářadí a jeho používání v prostředí s nebezpečím výbuchu 13
8 Hodnocení ochrany před výbuchem .. 13
 8.1 Vyhodnocení opatření a zabezpečení .. 13
 8.2 Zajištění trvalé účinnosti opatření .. 13
9 Dokumentace o ochraně před výbuchem ... 14
10 Příkaz „V“ ... 14
11 Závěrečná ustanovení ... 15
12 Citované a související předpisy ... 15
 12.1 České technické normy ... 15
 12.2 Technická pravidla a technická doporučení ... 16
 12.3 Právní předpisy .. 16
 12.4 Zahraniční předpisy .. 17
13 Literatura ... 17

Přílohy

Příloha 1 Požárně technické charakteristiky zemního plynu a odorantů 18
Příloha 2 Zásady pro stanovení zón na pracovištích ... 20
Příloha 3 Vzor Příkazu „V“ .. 21
ROZSAH PLATNOSTI

1.1 Tato technická pravidla (dále jen „pravidla“) stanoví bližší požadavky k zajištění bezpečnosti a ochrany zdraví při práci u plynových zařízení na pracovištích s nebezpečím výbuchu.

1.2 Při práci na zařízení, které je součástí odběrného plynového zařízení nebo v jeho blízkosti, je nutné přihlížet k podmínkám provozovatele těchto zařízení.

1.3 Tato pravidla neplatí při řešení problematiky bezpečnosti a ochrany zdraví při práci v prostředí s nebezpečím výbuchu, které je způsobeno jinými hořlavými látkami nebo plyny než plynným palivem s vysokým obsahem metanu (dále jen zemním plynem) a/nebo odorantem.

NÁZVOSLOVÍ

2.1 Termíny a definice

- **Dokumentace o ochraně před výbuchem** – písemný dokument, který zpracovává zaměstnavatel pro pracoviště, na kterém je identifikováno nebezpečí výbuchu, v souladu s nařízením vlády č. 406/2004 Sb.

- **Hořlavá látka** – zemní plyn anebo odorant, který může ve směsi se vzduchem v případě iniciace vyvolat exotermní reakci.

- **Inertizace** – nahrazení atmosférického kyslíku v systému netečným, nehořlavým plynem (např. CO₂, N₂) tak, aby atmosféra v systému nebyla schopna šířit plamen.

- **Klasifikace prostorů s nebezpečím výbuchu** – zatřídění prostor s výskytem výbušné atmosféry do zón.

- **Maximální experimentální bezpečná spára (MESG)** – maximální spára mezi dvěma částmi ve vnitřním komoře zkušebního zařízení, která, je-li plynná směs iniciována za stanovených podmínek, zamezi iniciaci vnější plynné směsi 25 mm dlouhou spárou pro všechny koncentrace zkušebního plynu ve vzduchu; MESG je vlastnost příslušné směsi plynu.

- **Nebezpečí výbuchu** – situace, kdy je v daném prostoru přítomna hořlavá látka v koncentrace mezi dolní a horní mezi výbušnosti, kyslík a potenciálně účinný zdroj iniciace.

- **Plynárenské zařízení** – zařízení výrobní plynu, přepravní soustavy, distribuční soustavy, zásobníku plynu, těžebního plynovodu a přímo plynovodu.

- **Plynové zařízení** – plynárenská zařízení, plynovodní přípojky, které nejsou ve vlastnictví provozovatele distribuční soustavy, odberá plynová zařízení, zásobníky zkapaněných plynů, plynojemy, plnírny, zkapaňovací a odpařovací stanice.

- **Prostor bez nebezpečí výbuchu** – prostor, ve kterém se neočekává přítomnost výbušné plynné atmosféry v takovém množství, aby byla nutná speciální opatření pro konstrukci, instalaci a používání zařízení.

- **Prostor s nebezpečím výbuchu** – prostor, ve kterém je nebo může být přítomna výbušná plynná atmosféra (např. v důsledku místních provozních podmínek) v takovém množství, že jsou nutné speciální opatření pro konstrukci, instalaci a používání zařízení.

1) ČSN EN 1127-1 ed.2
2.1.11 **Provozovatel** – právnická nebo podnikající fyzická osoba, která provozuje přepravní nebo distribuční soustavu nebo zásobník plynu, je držitelem příslušné licence a zajišťuje povinnosti zaměstnavatele též i smluvně.

2.1.12 **Příkaz „V“** –pisemný příkaz k provedení prací v prostorech s nebezpečím výbuchu nebo v jejich blízkosti.

2.1.13 **Technická a organizační opatření** – opatření, jejichž realizací je možné omezit (minimalizovat), případně vyloučit riziko výbuchu.

2.1.14 **Technický těsná armatura nebo spoj** – zařízení, u kterého je možné očekávat občasné úniky hořlavé látky.

2.1.15 **Trvale technicky těsná armatura nebo spoj** – zařízení, u kterého se neočekávají žádné úniky hořlavé látky.

2.1.16 **Výbuch** – prudká oxidace nebo rozkladná reakce, vyznačující se vzrůstem teploty, tlaku nebo obou těchto veličin současně a tlakovou vlnou.

2.1.17 **Výbušná plynná atmosféra** – směs hořlavých látek ve formě plynu nebo par se vzduchem za atmosférických podmínek, ve které se po vznícení samovolně říší hoření.

2.1.18 **Zaměstnanec** – fyzická osoba starší 15 let, která je způsobilá mít v pracovněprávních nebo obdobných pracovních vztazích práva a povinností a je způsobilá těchto práv a povinností na sebe brát.

2.1.19 **Zaměstnavatel** – právnická nebo podnikající fyzická osoba, která zaměstnává fyzické osoby (zaměstnance) v pracovněprávních nebo obdobných pracovních vztazích.

2.1.20 **Zdroj iniciace** – zdroj schopný uvolnit dostatek energie k iniciaci výbuchu.

2.2 Zkratky a značky

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Značka</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>armaturní uzel</td>
</tr>
<tr>
<td>ČBÚ</td>
<td>Český báňský úřad</td>
</tr>
<tr>
<td>DMV</td>
<td>dolní mez výbušnosti</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethylosulfid</td>
</tr>
<tr>
<td>HMV</td>
<td>horní mez výbušnosti</td>
</tr>
<tr>
<td>HUP</td>
<td>hlavní uzávěr plynu</td>
</tr>
<tr>
<td>KS</td>
<td>kompresní stanice</td>
</tr>
<tr>
<td>MESG</td>
<td>maximální experimentální bezpečná spára [mm]</td>
</tr>
<tr>
<td>MS</td>
<td>měřicí stanice</td>
</tr>
<tr>
<td>NTL</td>
<td>nizkotlaké plynové zařízení (do tlaku 0,05 bar včetně)</td>
</tr>
<tr>
<td>OD</td>
<td>odbočka</td>
</tr>
<tr>
<td>OIP</td>
<td>Oblastní inspektorát práce</td>
</tr>
<tr>
<td>OOPP</td>
<td>osobní ochranné pracovní prostředky</td>
</tr>
<tr>
<td>OS</td>
<td>odorizační stanice</td>
</tr>
<tr>
<td>POZZP</td>
<td>povrchové objekty a zařízení zásobníku plynu (využití sond, centrální areál zásobníku plynu)</td>
</tr>
<tr>
<td>RS</td>
<td>regulační stanice</td>
</tr>
<tr>
<td>RU</td>
<td>rozdělovací uzel</td>
</tr>
<tr>
<td>STL</td>
<td>středotlaké plynové zařízení (tlak nad 0,05 bar do 4 bar včetně)</td>
</tr>
<tr>
<td>SUIP</td>
<td>Státní úřad inspekcie práce</td>
</tr>
<tr>
<td>TBM</td>
<td>terciární butylmerkaptan</td>
</tr>
<tr>
<td>THT</td>
<td>tetrahydrothiofen</td>
</tr>
<tr>
<td>TU</td>
<td>trasový uzávěr</td>
</tr>
<tr>
<td>VTL</td>
<td>vysokotlaké plynové zařízení (tlak nad 4 bar)</td>
</tr>
</tbody>
</table>

2) **Zákon č. 458/2000 Sb.**
3 OBECNĚ

3.1 Technická pravidla jsou ve smyslu 3.1 ČSN EN 45020 normativním dokumentem obsahujícím pravidla správné praxe podle 3.5 ČSN EN 45020. Jsou vytvořena na základě konsensu a přijata na úrovni odvětví nezávislou zpracovací komisi, která se zastoupením dotčených orgánů a organizací, kterého charakter veřejně dostupného dokumentu, vypracovaného ve spolupráci zainteresovaných stran pomocí konzultací a postupů konsenzu, a od okamžiku jejích schválení jsou uvedenými orgány a organizacemi považována za uznána technická pravidla vyjadřující stav techniky podle 1.5 ČSN EN 45020.

3.2 Z hlediska nebezpečí výbuchu se posuzují všechny prostory, ve kterých se může vyskytnout výbušná atmosféra, a ve kterých se provádějí různé činnosti, přičemž se analyzuje úroveň bezpečnosti stávajících pracovišť a technologií.

3.3 Na základě vyhodnocení rizik ve smyslu prostory se provádějí technická a organizační opatření ke zvýšení bezpečnosti, zobrazení výbuchu a ochraně zdraví a majetku.

3.4 Klasifikaci prostorů s nebezpečím výbuchu provádí tým zaměstnanců, jehož členy jsou odborníci ze specifického oboru (např. technický pracovník plynových zařízení), s cílem stanovit velikost prostoru s nebezpečím výbuchu na základě analýzy bezpečnosti stávajících pracovišť a technologií.

3.5 V případě identifikace rizika výbuchu se zpracovává, v souladu s požadavkem nařízení vlády č. 406/2004 Sb., pro dané pracoviště písemná dokumentace o ochraně před výbuchem.

3.6 Požárně technické charakteristiky zemního plynu a odorantů jsou uvedeny v příloze 1.

3.7 Zásady pro stanovení zón na pracovištích jsou uvedeny v příloze 2.

4 URČENÍ PRACOVIŠT Č S NEBEZPEČÍM VÝBUCHU

4.1 Plynová zařízení s nebezpečím výbuchu

Mezi plynová zařízení, u kterých se posuzuje riziko výbuchu, patří:
- kompresní stanice;
- regulační stanice;
- měřicí stanice;
- odorizační stanice;
- trasové uzávěry, odbočky, rozdělovací uzly, armaturní úzly;
- povrchové objekty a zařízení podzemních zásobníků plynu.

Jedná se o provozní soubory, ze kterých může unikat za běžných provozních podmínek hořlavá látka z rozebíratelných spojů (závity, příruby) anebo z míst, určených k řízenému odvodu hořlavé látky do atmosféry (např. odchody plynového zařízení ve závěsném provedení).

V KS, RS, MS, OS, TU, OD, RU, AU, POZZP se po posouzení rizika výbuchu podle místních podmínek bude určit právnické subjekty na nebezpečí výbuchu, která zaměstnavatel uvede v písemné dokumentaci o ochraně před výbuchem.

5 POSUZOVÁNÍ NEBEZPEČÍ VÝBUCHU

5.1 Prostory s nebezpečím výbuchu

5.1.1 Zemní plyn anebo páry odorantu vytváří ve směsi se vzduchem (vzdušným kyslíkem) výbušnou atmosféru. Podmínkou pro vznik výbušné atmosféry je koncentrace zemního plynu anebo páry odorantu ve směsi se vzduchem mezi jejich limitů hlavového zařízení (DMV) a HMV.

3) Schválení se oznamuje v Informačním servisu GAS
5.1.2 V oblasti protivýbuchové prevence se jako maximální přípustná koncentrace zemního plynu anebo par odorantu uvažuje 50% DMV hořlavé látky ve směsi se vzduchem. Meze výbušnosti některých používaných hořlavých látek (zemní plyn, odoranty) jsou uvedeny v Příloze 1.

5.1.3 Pro všechny prováděné práce v prostorech s nebezpečím výbuchu je stanovena hodnota 10% DMV hořlavé látky ve směsi se vzduchem, při které je vždy nutné vyhodnotit situaci v místě provádění prací, resp. místo, kde použitý detektor plynu signalizuje dosažení hodnoty 10% DMV.

5.1.4 Pro práce s otevřeným ohněm, broušení a řezání, tj. práce, při kterých dochází k tvorbě řady jisker, a v místech s povrchovou teplotou nad 200 °C je maximální přípustná koncentrace zemního plynu anebo par odorantu 10% DMV hořlavé látky ve směsi se vzduchem. Po dosažení 10% DMV se musí práce přerušit a provést nápravná opatření ke snížení koncentrace hořlavé látky ve směsi se vzduchem pod 10% DMV, např. větráním, inertizací, odtlakováním dalšího úseku potrubí. Po snížení koncentrace pod 10% DMV je možné v pracovní činnosti pokračovat.

5.1.5 Činnosti, při kterých nejsou prováděny práce s otevřeným ohněm, broušení a řezání, tj. práce, při kterých nedochází k tvorbě řady jisker, je maximální přípustná koncentrace 30% DMV hořlavé látky ve směsi se vzduchem. Jedná se o práce, při nichž jsou prováděny montáže rozebíratelných spojů, např. montáž plynoměru, šoupěte na obtoku uzávěru, manipulace s uzavíracími balony, práce při vkládání a vyjímání pistu při čištění nebo inspekcí.

5.1.6 Na základě souhlasu vedoucího akce je možno provádět práce podle bodu 5.1.5 až do 50% DMV hořlavé látky se vzduchem.

5.2 Základní typy zdrojů iniciace
ČSN EN 1127-1 ed. 2 uvádí základní typy zdrojů iniciace, vyskytující se v technické praxi. Mezi tyto základní zdroje iniciace patří:
- horké povrchy;
- plameny a horké plyny (včetně horkých částic);
- mechanicky vznikající jiskry;
- elektrická zařízení;
- rozptylové elektrické prudy, katodová ochrana proti korozi;
- statická elektřina;
- úder blesku;
- radiofrekvenční elektromagnetické vlny od 10 kHz až 300 GHz;
- elektromagnetické vlny od 300 GHz až 3000 THz;
- ionizující záření;
- ultrazvuk;
- adiabatická komprese a různé vlny;
- exotermické reakce včetně samovznícení prachů.

5.3 Principy posouzení nebezpečí výbuchu
- stanovení možných zdrojů uniku zemního plynu anebo par odorantu – provozovatel posuzuje zařízení a možná místa uniku nebezpečné látky z provozované technologie, např. podle ČSN EN 1127-1 ed. 2.
- vyhodnocení vytypovaných nebezpečných prostor uvedeného zařízení a posouzení možných rizik nebezpečí od hořlavých plynů nebo par podle ČSN EN 60079-10-1 ed. 2.
- vyhodnocení předpokládaných aktivních a účinných zdrojů iniciace v prostorech s nebezpečím výbuchu (výbušných zónách), včetně možného přenosu iniciace z prostorů bez nebezpečí výbuchu.

6 PROSTORY S NEBEZPEČÍM VÝBUCHU A POŽADAVKY NA ZAŘÍZENÍ POUŽÍVANÉ V TĚCHTO PROSTORECH

6.1 Zóny s nebezpečím výbuchu
K určení rozsahu opatření, nezbytných k vyloučení zdrojů iniciace, se prostory s nebezpečím výbuchu klasifikují do zón, které jsou založeny na pravděpodobné četnosti výskytu a době trvání nebezpečné výbušné plynné atmosféry.
Prostory s výskytem výbušné plynné atmosféry se klasifikují do těchto zón:

Zóna 0 Prostory trvale pracujících technologií, ve kterých je výbušná plynná atmosféra tvořená směsí hořlavých látek ve formě plynu, par nebo mlhy se vzdutchem přitomna trvale nebo po dlouhé časová období nebo často. Do zóny 0 se zřažají prostory, ve kterých může vzniknout koncentrace vyšší, než je DMV hořlavé látky ve směsi se vzdutchem, po dobu delší než 1000 hodin ročně;

Zóna 1 Prostory trvale pracujících technologií, ve kterých je přiležitostný vznik výbušné plynné atmosféry, tvořené směsí hořlavých látek ve formě plynu, par nebo mlhy se vzdutchem, pravděpodobný za normálního provozu. Do zóny 1 se zřažají prostory, ve kterých může vzniknout koncentrace vyšší, než je DMV hořlavé látky ve směsi se vzdutchem, po dobu delší než 10 hodin ročně, ale zároveň není pravděpodobný výskyt výbušné atmosféry po dobu delší než 1000 hodin ročně;

Zóna 2 Prostory trvale pracujících technologií, ve kterých není vznik výbušné plynné atmosféry tvořené směsí hořlavých látek ve formě plynu, par nebo mlhy se vzdutchem pravděpodobný za normálního provozu, avšak pokud tato atmosféra vznikne, bude přetrvávat pouze po krátké časové období. Do zóny 2 se zřažají prostory, ve kterých může vzniknout koncentrace vyšší, než je DMV hořlavé látky ve směsi se vzdutchem (i pouze několik vteřin), ale není pravděpodobný výskyt výbušné atmosféry po dobu delší než 10 hodin ročně.

6.2 Zařízení do prostředí s nebezpečím výbuchu

6.2.1 Zařízení a ochranné systémy využívané a trvale instalované v prostorech s nebezpečím výbuchu musí splňovat podmínky nařízení vlády č. 116/2016 Sb.

6.2.2 Zařízení elektrická musí svým provedením odpovídat ČSN EN 60079-14 ed. 4.

6.2.3 Zařízení neelektrická musí svým provedením odpovídat ČSN EN 13463-1.

6.3 Zásady pro používání přenosných elektronických/elektrických zařízení

6.3.1 Zařízení, jako jsou notebooky, tablety, handheldy, vysílačky, mobilní telefony, kamery, záznamová zařízení, ruční svítinky a další zařízení obdobného charakteru, která nejsou v provedení pro použití v prostorech s nebezpečím výbuchu, resp. podle nařízení vlády č. 116/2016 Sb. nemají označení ochrany proti výbuchu Ex následované značkou skupiny a kategorií zařízení, mohou pracovní provozovatele tohož zařízení používat v prostorách zařazených jako prostory s nebezpečím výbuchu zóna 1 a 2 za podmínek uvedených v 6.3.2.

6.3.2 Do definovaných prostor mohou osoby s elektronickým/elektrickým zařízením, uvedeným v 6.3.1, vstoupit, používat a provozovat ho při splnění těchto podmínek:

- není známo, že by byla v prostoru narušena integrita plynového zařízení;
- v prostorech, kde je instalována (rozumí se tím pevná instalace) optická a akustická signalizace výskytu hořlavé látky, není tímto zařízením v době vstupu detekována koncentrace hořlavé látky 10% DMV a vyšší;
- pokud není v prostorech instalována optická a akustická signalizace výskytu hořlavé látky, musí vstupující osoba s elektronickým/elektrickým zařízením splnit následující body:
 a) před použitím elektronických/elektrických zařízení musí detektorem ověřit stav prostředí, přičemž koncentrace hořlavé látky ve směsi se vzdutchem nemusí být 10% DMV a vyšší. V případě, že se nejedná o jednorázové a krátkodobé použití přístroje, je nutné opakovat kalibraci zařízení (kalibrace nebo kalibrace provádět detektorem nepřetržitou kontrolo koncentrace hořlavé látky;
 b) používaný detektor musí mít optickou a akustickou signalizaci 10% DMV hořlavé látky ve směsi se vzdutchem a optickou a akustickou signalizaci v případě jeho poruchy nebo vybití baterie;
 c) pokud je v prostorách používán detektor osobami z cizích organizací, musí být provozovatelí plynového zařízení doložen doklad o použitelnosti detektoru, včetně dokladu o kalibraci přístroje (kalibraci štítek nebo kalibraci protokol).
6.3.3 Výše uvedené zásady neplatí pro používání elektrického ručního nářadí (např. vrtáky, brusky, včetně akumulátorového nářadí) a jiných podobných elektrických strojů a zařízení (např. elektrocentrály).

6.3.4 Osoby vstupující do prostor s nebezpečím výbuchu a používající elektronické/elektrické zařízení musí být prokazatelně seznámeny s podmínkami pro používání elektronického/elektrického zařízení, se zásadami bezpečné práce (např. k obsluze zařízení) a s používaným detektorem zemního plynu.

7 OCHRANA PŘED VÝBUCHEM

7.1 Bezpečnostní principy

Základními kroky postupu při ochraně a prevenci před výbuchem jsou:
- opatření k vyloučení pravděpodobnosti vzniku výbušné atmosféry, viz 7.2;
- opatření k vyloučení zdrojů iniciace, viz 7.3;
- ochranná opatření pro omezení nebezpečných účinků výbuchu, viz 7.4.

Opatření se uplatňují v uvedeném pořadí důležitosti a mohou být uplatněna zvlášť nebo společně.

7.2 Vyloučení pravděpodobnosti vzniku výbušné atmosféry

7.2.1 Výbušná atmosféra se může vyskytnout v okolí plynového zařízení v místech rozebíratelných spojů, vyústění odfuků apod. Vyloučení pravděpodobnosti vzniku výbušné atmosféry lze zajistit volbou vhodné konstrukce zařízení a organizací údržby zařízení, např. provozovatel může snížit pravděpodobnost úniku plynu volbou svařovaného spoje místo přírubového a volbou způsobu a četnosti kontrol těsnosti plynového zařízení.

7.2.2 Vzniku výbušné atmosféry může být zabráněno zajištěním těsnosti spoje. Z tohoto hlediska se rozlišují zařízení:
- trvale technicky těsné;
- technicky těsné.

7.2.2.1 Trvale technicky těsné zařízení

U trvale technicky těsného zařízení, viz 2.1.15, se neočekávají žádné úniky hořlavé látky do jeho okolí. Zařízení se považuje za trvale technicky těsné, pokud:
- je technicky těsné v důsledku své konstrukce; nebo
- jeho technická těsnost je trvale zajištěna pomocí údržby a dohledu.

Příklady trvale technicky těsného zařízení jsou:
- svarové spoje;
- přírubové spojení pero-drážka;
- příruby s výkružkem a nákružkem;
- příruby s hladkou těsnící lištou a bez jakýchkoliv zvláštních požadavků na konstrukci těsnění;
- spojení pomocí kuželových spojení s řezným prstencem v potrubních trasách nad DN 32;
- NPT závity (americké kuželové závity pro trubky) nebo jiné kuželové závity pro trubky s těsněním v závitech do DN 50, pokud nejsou vystaveny cyklickému tepelnému namáhání (Dt > 100 °C) a za předpokladu, že jsou rozebírány pouze výjimečně.

7.2.2.2 Technicky těsné zařízení

U technicky těsného zařízení, viz 2.1.14, se očekávají občasné úniky hořlavé látky do jeho okolí. Zařízení se považuje za technicky těsné, pokud jakákoli zkouška těsnosti vhodná pro danou aplikaci, např. použití pěnotvorného roztoku nebo detektoru úniku plynu, neprokáže únik.

Příklady technicky těsných zařízení jsou:
- příruby s hladkou těsnící lištou a bez jakýchkoliv zvláštních požadavků na konstrukci těsnění;
- spojení pomocí kuželových spojení s řezným prstencem v potrubních trasách nad DN 32;
- rozebíratelná spojení, která jsou rozebírána běžně (nikoliv výjimečně 1).
7.2.3 K zabránění vytvoření výbušné směsi je rovněž možné provést inertizaci, tj. přidávání inertizačních látek v plynné formě. Rozlišuje se inertizace:
- částečná, viz 7.2.3.1;
- celková (úplná), viz 7.2.3.2.

7.2.3.1 Částečná inertizace

Částečná inertizace představuje snížení koncentrace kyslíku ve směsi tak, že již není nadále výbušná. V případě částečné inertizace se může směs stát opět výbušnou po přimíšení dostatečného množství kyslíku nebo vzduchu (např. únik ze zařízení do vnějšího prostoru).

Pro dosažení částečné inertizace je nutno snížit koncentraci pod mezní koncentraci kyslíku. Mezní koncentrace kyslíku \(C_{\text{max}O_2} \) je závislá na druhu hořlavé látky a také na druhu inertizačního plynu, tlaku a teplotě. V Tabulce 1 jsou uvedeny hodnoty mezních koncentrací kyslíku pro směsi metan/vzduch/dusík (\(N_2 \)) a metan/vzduch/oxid uhličitý (\(CO_2 \)).

Při detekci se nastavuje v kyslíkoměrech výstražná mez na hodnotu 25 % až 33 % mezní koncentrace kyslíku a havarijní mez na 50 % až 66 % mezní koncentrace kyslíku.

Kyslíkoměry pro hlídání mezní koncentrace kyslíku musí splňovat požadavky ČSN EN 50104 ed. 3.

Tabulka 1 – Mezní koncentrace kyslíku \(C_{\text{max}O_2} \) a minimální poměr inertního plynu ke vzduchu při částečné inertizaci

<table>
<thead>
<tr>
<th>Hořlavá látka</th>
<th>Částečná inertizace – směs metan/vzduch/inertní plyn</th>
<th>Mezní koncentrace kyslíku (C_{\text{max}O_2}) [% obj.]</th>
<th>Minimalní poměr inertního plynu ke vzduchu při libovolném obsahu metanu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(N_2) a)</td>
<td>(CO_2) b)</td>
</tr>
<tr>
<td>metan</td>
<td></td>
<td>11,3</td>
<td>14,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N_2 / \text{vzduch}) e)</td>
<td>(CO_2 / \text{vzduch}) f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,69</td>
<td>0,39</td>
</tr>
</tbody>
</table>

Podmínky: Teplota 20 °C a tlak 1 bar
Poznámka: Indexy a), b), c), d) – viz příklady pod Tabulkou 1.

Příklady:
- a) Při částečné inertizaci metanu pomocí dusíku musí být pro zajištění bezpečnosti obsah kyslíku max. 11,3 % obj. ve směsi metan/vzduch/dusík, přičemž musí být zajištěno, že nedojde k nárůstu množství vzduchu (kyslíku) ve směsi.
- b) Při částečné inertizaci metanu pomocí oxidu uhličitého musí být pro zajištění bezpečnosti obsah kyslíku max. 14,1 % obj. ve směsi metan/vzduch/oxid uhličitý, přičemž musí být zajištěno, že nedojde k nárůstu množství vzduchu (kyslíku) ve směsi.
- c) Při obsahu vzduchu např. 3 % obj. je při částečné inertizaci pomocí dusíku nutná minimální koncentrace 2,07 % obj. dusíku pro zajištění bezpečnosti při směsi dusík/vzduch/metan.
- d) Při obsahu vzduchu např. 3 % obj. je při částečné inertizaci pomocí oxidu uhličitého nutná minimální koncentrace 1,17 % obj. oxidu uhličitého pro zajištění bezpečnosti při směsi oxid uhličitý/vzduch/metan.

7.2.3.2 Celková (úplná) inertizace

Při celkové (úplné) inertizaci je poměr dodávaného inertního plynu k hořlavé látce ve směsi tak vysoký, že směs se nestane výbušnou i při přímisí jakéhokoliv množství vzduchu. V Tabulce 2 jsou uvedeny minimální poměry inertního plynu k metanu při celkové inertizaci.

Tabulka 2 – Minimalní poměr inertního plynu a metanu při celkové (úplné) inertizaci

<table>
<thead>
<tr>
<th>Hořlavá látka</th>
<th>Celková (úplná) inertizace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimální poměr inertního plynu ke metanu při libovolném obsahu kyslíku nebo vzduchu</td>
</tr>
<tr>
<td></td>
<td>(N_2 / \text{CH}_4) e)</td>
</tr>
<tr>
<td>metan</td>
<td>8,1</td>
</tr>
</tbody>
</table>

Podmínky: Teplota 20 °C a tlak 1 bar
Poznámka: Indexy e), f) – viz příklady pod Tabulkou 2.
Příklady:
e) Při obsahu metanu 1% obj. je minimální koncentrace dusíku pro zajištění bezpečnosti celkovou inertizací 8,1 % obj., tedy množství dusíku musí být min. 8,1 x větší než množství metanu ve směsi metan/vzduch.
f) Při obsahu metanu 1% obj. je minimální koncentrace oxidu uhličitého pro zajištění bezpečnosti celkovou inertizací 4,6 % obj., tedy množství oxidu uhličitého musí být min. 4,6 x větší než množství metanu ve směsi metan/vzduch.

7.3 Vyloučení zdrojů iniciace

V prostorech s nebezpečím výbuchu je třeba vyloučit iniciaci zdrojů uvedených v 5.2:
– provozováním vyhovujících zařízení a dodržováním bezpečnostních předpisů a pracovních podmínek stanovených v pracovních postupech;
– použitím elektrických a neelektrických zařízení, vyhovujících odpovídající kategorii nařízení vlády č. 116/2016 Sb.

7.4 Ochranná opatření pro omezení nebezpečných účinků výbuchu

Pro omezení nebezpečných účinků výbuchu se s ohledem na konkrétní podmínky volí ochranná opatření, představující pasivní ochranu pomocí níže uvedených konstrukčních a dalších opatření:
– konstrukce odolné výbuchovému tlaku;
– konstrukce odolné tlakovému rázu;
– odlehčení výbuchovému tlaku;
– potlačení výbuchu;
– zabránění přenosu plamene a výbuchu (oddělení výbuchu).

7.5 Použití osobních ochranných pomůcek a prostředků v prostorech s nebezpečím výbuchu

7.5.1 Pro provádění činností v prostorech s nebezpečím výbuchu je zaměstnavatel povinen vybavit zaměstnance vyhovujícími osobními ochranami, které musí být navrženy a vyrobeny tak, aby se nemohly stát zdrojem elektrického, elektrostatického nebo nárazem způsobeného obléhání nebo jiskry, které mohou způsobit vznícení výbušné směsi.

7.5.2 Pracovní obuv a oděv pro použití v prostorech s nebezpečím výbuchu má odpovídat požadavkům ČSN CLC/TR 60079-32-1.

7.6 Školení zaměstnanců

7.6.1 Zaměstnavatel je povinen zajistit pro zaměstnance pracující v prostorech s nebezpečím výbuchu školení, v jehož rámci budou poučeni jednak o správné obsluze technologie a ostatních zařízení a v uvedených prostorech, ale také o možnostech vzniku nebezpečí výbuchu na příslušném pracovišti. Součástí školení musí být vyšetřování významu všech bezpečnostních znázornění na příslušném pracovišti a v prostoru a používání OOPP.

7.6.2 Způsob, rozsah a interval opakování školení stanoví zaměstnavatel s ohledem na provozní podmínky.

7.7 Údržba a opravy

Základní požadavky na bezpečnost provozu plynárenských zařízení jsou uvedeny v TPG 905 01.

7.8 Koordinační povinnosti

Plnění koordinačních povinností vyplývá, mimo jiné, z § 101, odst. (3) zákona č. 262/2006 Sb. a ze zákona č. 309/2006 Sb.

7.8.1 Plně-li na jednom pracovišti úkoly zaměstnanci provozovatele zařízení a jiných organizací, jsou zaměstnavatelé povinni vzájemně se písemně informovat o rizicích a spolupracovat při zajišťování bezpečnosti a ochrany zdraví při práci. Každý ze zaměstnavatelů je přitom povinen:
– zajistit, aby jeho činnosti a práce jeho zaměstnanců byly organizovány a prováděny tak, aby současně byly chráněni také zaměstnanci dalšího zaměstnavatele;
– spolupracovat při zajištění bezpečného, nezávadného a zdraví neohrožujícího pracovního prostředí pro všechny zaměstnance na pracovišti.
7.8.2 Pověřený zaměstnanec provozovatele zařízení, na jehož pracovišti budou vykonávat práce zaměstnanci jiné organizace, zajistíí písemné seznámení příslušného vedoucího zaměstnance externí organizace s riziky před zahájením prací. V případě, že jsou práce na plynových zařízeních prováděny na základě předání staveniště, je dodavatelská organizace seznámena s riziky zaměstnancem odpovědným za předání staveniště. V případě, že pro staveniště bude určen koordinátor bezpečnosti a ochrany zdraví při práci na staveništi podle ustanovení § 14 zákona č. 309/2006 Sb., zajišťuje koordinaci opatření bezpečnosti a ochrany zdraví při práci na staveništi tento koordinátor.

7.8.3 Obsah a rozsah seznámení s riziky závisí na místních podmínek, charakteru prováděných prací a zpracované dokumentaci o ochraně před výbuchem.

7.9 Značení prostorů s nebezpečím výbuchu

Místa vstupů do prostorů, ve kterých je možno očekávat vznik výbušné plynné atmosféry a tím ohrožení zdraví a bezpečnosti zaměstnanců, musí být označeny výstražnou značkou podle nařízení vlády č. 375/2017 Sb. (EX Nebezpečí – výbušné prostředí). K výstražné značce mohou být připojeny další informace o povaze výbušné plynné atmosféry v označeném prostoru a rovněž další výstražné značky (zákaz kouření, vstup nepovolaných osob apod.).

7.10 Druhy ručního nářadí a jeho používání v prostředí s nebezpečím výbuchu

7.10.1 Druhy ručního nářadí:

a) nářadí, která mohou při použití vytvářet pouze jednotlivé jiskry (např. šroubováky, klíče, příklepové šroubováky);

b) nářadí, u kterých vzniká řada jisker, jsou-li použity při řezání a broušení.

7.10.2 Ruční nářadí v prostředí s nebezpečím výbuchu se používá podle následujících zásad:

a) V zóně 0 nejsou dovoleny nástroje a nářadí, které mohou být příčinou jisker, bez dalších opatření;

b) V zónách 1 a 2 je dovoleno používat nástroje a nářadí podle 7.10.1 a);

c) Nástroje a nářadí podle 7.10.1 b) jsou dovoleny pouze tehdy, pokud je zabezpečeno, že na pracovním místě není nebezpečná výbušná atmosféra (jedná se o pracoviště bez nebezpečí výbuchu, pracoviště je odplynuto nebo je použito částečná nebo úplná inertizace);

d) V zóně 0 a při pracích na plynovém zařízení, kde dochází k narušení integrity potrubí nebo údržbě, jsou-li použity při přípravě a broušení.

8 HODNOCENÍ OCHRANY PŘED VÝBUCHEM

8.1 Vyhodnocení opatření a zabezpečení

Vyhodnocení opatření a zabezpečení před výbuchem se provádí na základě zpracované dokumentace o ochraně před výbuchem. Při posuzování výstupu a rozsahu prostorů s nebezpečím výbuchu je nutné jako základní podkladový dokument použít protokol o určení vnějších vlivů a v něm uvedené klasifikace prostředí s nebezpečím výbuchu pro daný objekt/prostor.

Vyhodnocení musí obsahovat posouzení:

– dodržování příslušných technologických postupů a bezpečnostních předpisů;

– dodržování bezpečnostních opatření technického a organizačního charakteru jak během provozu, tak i v mimoprovozních stavech;

– zda jsou dopracována a následně dodržována organizační opatření, stanovená ve zpracované dokumentaci o ochraně před výbuchem;

– zda jsou v technologiích a vyhodnocených nebezpečných prostorách minimalizovány podmínky pro vznik výbuchu a následné ohrožení bezpečnosti a zdraví zaměstnanců.

8.2 Zajištění trvalé účinnosti opatření

Pro zajištění trvalé účinnosti přijatých opatření a zabezpečení musí zaměstnavatel pravidelně prověřovat, zda přijatá opatření a zabezpečení odpovídají aktuálnímu stavu v příslušném prostoru s nebezpečím výbuchu a přítomným rizikům na příslušném pracovišti, a podle okolností a měnících se podmínek musí stávající opatření a zařízení přehodnocovat a zajišťovat aktuálnost dokumentace.
8.2.1 Zajištění trvalé účinnosti přijatých opatření a zabráncení a jejich prověřování se rovněž vztahuje na zařízení umístěná mimo prostory s nebezpečím výbuchu, pokud mají vztah a přispívají k zajištění bezpečnosti v uvedených prostorech s nebezpečím výbuchu.

8.2.2 Lhůty pro prověrky aktuálního stavu, případně přehodnocení zabránceň a jejich prověřování se rovněž vztahují na zařízení umístěná mimo prostory s nebezpečím výbuchu, pokud mají vztah a přispívají k zajištění bezpečnosti v uvedených prostorech s nebezpečím výbuchu.

8.2.3 Za významné okolnosti, ovlivňující zajištění bezpečnosti a ochrany zdraví při práci, je nutno vždy považovat minimálně následující:
- změny nebezpečných látek v zařízení a na pracovišti;
- změny technologického zařízení nebo technologického postupu;
- změny řídícího systému technologie či zásadní změny v něm nebo změny v instalaci a nastavení elektrických, detekčních, monitorovacích a ochranných přístrojů a zařízení;
- mimořádné události v posuzovaném objektu/technologii.

8.2.4 Při jakýchkoliv uvedených změnách a mimořádných událostech je nutno provést nové hodnocení posuzované technologie z hlediska ochrany před výbuchem.

9 DOKUMENTACE O OCHRANĚ PŘED VÝBUCHEM

9.1 Dokumentaci o ochraně před výbuchem zpracovává zaměstnavatel v návaznosti na výsledky posuzování rizika výbuchu se zřetelem na:
- pravděpodobnost výskytu výbušné atmosféry a délky jejího trvání;
- pravděpodobnost výskytu zdrojů iniciace, včetně možných výbojů statické elektriny, a posouzení, zda jsou aktivní a účinné;
- povšimnuta zařízení včetně instalace, látky, technologické procesy, pracovní postupy a jejich možné vzájemné působení;
- rozsah předpokládaných účinků výbuchu.

9.2 Dokumentace o ochraně před výbuchem je zpracovávána jednotlivě pro konkrétní prostory, nebo jako „typová“ pro prostory s analogickými podmínky z hlediska určení, technologie a nebezpečí výbuchu (např. prostory RS, prostory KS a další).

9.3 Dokumentace uvádí prostory, ve kterých smějí být činnosti prováděny:
- jen v souladu s písemnými pokyny zaměstnavatele;
- jen na základě písemného příkazu „V“ k provedení prací; dokumentace uvádí i zaměstnance, kteří jsou oprávněni příkazy „V“ vydávat.

10 PŘÍKAZ „V“

10.1 Pro práce nebo činnosti, které mají být prováděny v prostředí s nebezpečím výbuchu nebo v jeho blízkosti, se vydává příkaz „V“ v případě, že to je stanoveno v písemné dokumentaci o ochraně před výbuchem.

10.2 Mezi práce nebo činnosti, pro které se musí vydávat příkaz „V“, patří např. činnosti uvedené v Části II TPG 905 01.

10.3 Příkaz „V“ vydává pověřený zaměstnavatel zaměstnavatele.

10.4 Příkaz „V“ obsahuje podmínky a opatření pro provádění činností v prostředí s nebezpečím výbuchu.

10.5 Bez vědomí vedoucího příslušného pracoviště nebo osoby oprávněné vydat písemný příkaz „V“ a bez vydání příkazu „V“ nesmějí být v prostорech s nebezpečím výbuchu prováděny žádné práce a činnosti, jejichž součásti je výskyt nebo použití iniciacičních zdrojů v tomto prostoru (svařování, pájení, broušení apod.).

10.6 Příkaz „V“ musí obsahovat minimálně následující údaje:
- datum vydání a dobu platnosti příkazu;
- termín zahájení výkonu práce, popřípadě přerušení práce (datum, hodina);
– termín ukončení práce (datum, hodina), stvrzený podpisy vedoucího práce a osoby pracoviště přejímající;
– název a druh práce a vymezení prostoru, kde bude práce vykonávána;
– pokyny k zajištění pracoviště k ochraně před vznikem výbušné atmosféry, popřípadě k jeho uvedení do původního stavu;
– stanovení opatření k zajištění bezpečnosti a ochrany zdraví při práci, která musí být provedena před začálením práce;
– seznam a popis ochranných a zásahových prostředků pro případ zdolávání mimořádných událostí, např. věcných prostředků požární ochrany;
– jméno, příjmení a podpis oprávněného zaměstnance, který příkaz zpracoval, popřípadě vydal;
– jméno, příjmení a podpis vedoucího práce, který za provedení práce odpovídá a který příkaz převzal;
– jména a příjmení osob, které budou práci vykonávat, a jejich podpisy, kterými tyto osoby stvrdují, že byly náležitě poučeny a seznámeny se způsobem zajišťování pracoviště a srozuměly se způsobem provedení práce;
– další nezbytné údaje, např. uvedení, že práce je vykonávána pod dozorem nebo pod dohledem určené osoby pověřené dozorem nebo dohledem nad výkonem práce, zápis o předání pracoviště.

10.7 Příkaz „V“ musí být vydán písemně a s jeho obsahem musí být před provedením prací prokazatelně seznámeny všechny osoby mající pracovní či odpovědný vztah k dotčeným prostorům a prováděným činnostem. Příklad příkazu „V“ je uveden v Příloze 3.

10.8 Pracovní postup podle TPG 905 01 je možné považovat za příkaz „V“ podle těchto pravidel, pokud obsahuje veškeré náležitosti příkazu „V“ podle přílohy č. 2 k nařízení vlády č. 406/2004 Sb.

11 ZÁVĚREČNÁ USTANOVENÍ
Činnosti provedené podle technických pravidel odpovídají stavu vědeckých a technických poznatků. Odchýlení se od těchto pravidel při zajištění alespoň stejné úrovní bezpečnosti a spořežlivosti, která je deklarována ustanoveními těchto pravidel, činí příslušný subjekt na vlastní odpovědnost s vědomím skutečnosti, že splnění bezpečnosti a spořežlivosti musí prokázat.

12 CITOVANÉ A SOUVISEJÍCÍ PŘEDPISY

12.1 České technické normy
ČSN EN 45020 Normalizace a souvisící činnosti – Všeobecný slovník
ČSN EN 60079-10-1 ed.2 Výbušné atmosféry – Část 10: Určování nebezpečných prostorů – Výbušné plynné atmosféry
ČSN EN 60079-14 ed.4 Výbušné atmosféry – Část 14: Návrh, výběr a zřizování elektrických instalací
ČSN EN 60079-20-1 Výbušné atmosféry - Část 20-1: Materiálové vlastnosti pro klasifikaci plynů a par – Zkušební metody a data
ČSN EN 60079-29-1 ed.2 Výbušné atmosféry – Část 29-1: Detektory plynů – Funkční požadavky na detektory hořlavých plynů
ČSN EN 60079-29-2 ed.2 Výbušné atmosféry – Část 29-2: Detektory plynů – Výběr, instalace, použití a údržba detektorek hořlavých plynů a kyslíku
ČSN CLC/TR 60079-32-1 Výbušné atmosféry – Část 32-1: Návod na ochranu před účinky statické elektřiny
ČSN EN 50104 ed.3 Elektrická zařízení pro detekci a měření kyslíku – Požadavky na provedení a metody zkoušek
ČSN EN 1127-1 ed. 2 Výbušná prostředí – Prevence a ochrana proti výbuchu – Část 1: Základní koncepce a metodik
ČSN EN 13237 Prostředky s nebezpečím výbuchu – Termíny a definice pro zařízení a ochranné systémy určené pro použití v prostředí s nebezpečím výbuchu
12.2 Technická pravidla a technická doporučení

TPG 905 01 Základní požadavky na bezpečnost provozu plynárenských zařízení
TPG 913 01 Kontrola těsnosti a činnosti spojené s řešením úniků plynu na plynovodech a plynovodních přípojích
TPG 938 01 Detekční systémy pro zajištění provozu před nebezpečím úniku hořlavých plynů

12.3 Právní předpisy

174/1968 Sb. Zákon o státním odborném dozoru nad bezpečností práce, ve znění pozdějších předpisů
85/1978 Sb. Vyhláška o kontrolách, revizích a zkouškách plynových zařízení, ve znění pozdějších předpisů
21/1979 Sb. Vyhláška, kterou se stanoví vyhledávací plynová zařízení a stanoví některé podmínky k jízdnímu řádu, ve znění pozdějších předpisů
48/1982 Sb. Vyhláška, kterou se stanoví základní požadavky k jízdnímu řádu, ve znění pozdějších předpisů
61/1988 Sb. Zákon o hornické činnosti, výbušninách a o státní báňské správě, ve znění pozdějších předpisů
17/1992 Sb. Zákon o životním prostředí, ve znění pozdějších předpisů
634/1992 Sb. Zákon o obecné bezpečnosti výrobků a o změně některých zákonů, ve znění pozdějších předpisů
22/1997 Sb. Zákon o technických požadavcích na výrobky a o změně a doplnění některých zákonů, ve znění pozdějších předpisů
239/1998 Sb. Vyhláška o bezpečnosti a ochraně zdraví při práci na závěsu s nebezpečím výbuchu
87/2000 Sb. Vyhláška, kterou se stanoví podmínky požární bezpečnosti při svařování a nahlazování živic v tavných nádobách
458/2000 Sb. Zákon o podmínkách podnikání a o výkonu státní správy v energetických odvětvích a o změně některých zákonů, ve znění pozdějších předpisů
102/2001 Sb. Zákon o obecné bezpečnosti výrobně a o změně některých zákonů (zákon o obecné bezpečnosti výrobních dohod), ve znění pozdějších předpisů
185/2001 Sb. Zákon o odpadech a o změně některých dalších zákonů, ve znění pozdějších předpisů
246/2001 Sb. Vyhláška o stanovení podmínek požární bezpečnosti a výkonu státního požárního dozoru (vyhláška o požární prevenci), ve znění pozdějších předpisů
254/2001 Sb. Zákon o vodách a o změně některých zákonů (vodní zákon), ve znění pozdějších předpisů
378/2001 Sb. Nařízení vlády, kterým se stanoví bližší požadavky na bezpečný provoz a používání strojů, technických zařízení, přístrojů a nářadí
495/2001 Sb. Nařízení vlády, kterým se stanoví bližší požadavky na bezpečný provoz a používání strojů, technických zařízení, přístrojů a nářadí
406/2004 Sb. Nařízení vlády o bližších požadavcích na zajištění bezpečnosti a ochrany zdraví při práci v prostorách s nebezpečím výbuchu
101/2005 Sb. Nařízení vlády o podrobnějších požadavcích na pracoviště a pracovní prostředí
251/2005 Sb. Zákon o inspekci práce, ve znění pozdějších předpisů
262/2006 Sb. Zákon o pracovních poměrech, ve znění pozdějších předpisů
183/2006 Sb. Zákon o územním plánování a stavebním řádu (stavební zákon), ve znění pozdějších předpisů
309/2006 Sb. Zákon, kterým se upravuje další požadavky bezpečnosti a ochrany zdraví při práci v pracovním prostoru, ve znění pozdějších předpisů
591/2006 Sb. Nařízení vlády o bližších minimálních požadavcích na bezpečnost a ochranu zdraví při práci na staveništích, ve znění pozdějších předpisů
592/2006 Sb. Nařízení vlády o podmínkách akreditace a provádění zkoušek z odborné způsobilosti, ve znění pozdějších předpisů
361/2007 Sb. Nařízení vlády, kterým se stanoví podmínky ochrany zdraví při práci, ve znění pozdějších předpisů
268/2009 Sb. Vyhláška o technických požadavcích na stavby, ve znění pozdějších předpisů
201/2010 Sb. Nařízení vlády o způsobu evidence úrazů, hlásení a zasílání záznamu o úrazu, ve znění pozdějších předpisů
201/2012 Sb. Zámek o ochraně ovzduší, ve znění pozdějších předpisů
116/2016 Sb. Nařízení vlády o posuzování shody zařízení a ochranných systémů určených k použití v prostředí s nebezpečím výbuchu při jejich dodávání na trh
375/2017 Sb. Nařízení vlády o vzhledu, umístění a provedení bezpečnostních značek a značení a zavedení signálů
63/2018 Sb. Nařízení vlády o zrušení některých nařízení vlády v oblasti technických požadavků na výrobky

12.4 Zahraniční předpisy

Směrnice Evropského parlamentu a Rady 2014/34/EU o harmonizaci právních předpisů členských států týkajících se zařízení a ochranných systémů určených k použití v prostředí s nebezpečím výbuchu

Směrnice Evropského parlamentu a Rady 94/9/ES, kterou se stanoví technické požadavky na zařízení a ochranné systémy určené pro použití v prostředí s nebezpečím výbuchu

13 LITERATURA

TNI 33 2320 Elektrická zařízení pro výbušnou plynnou atmosféru – Určování nebezpečných prostorů
(33 2320) – Komentář k ČSN EN 60079-10

Požárně a bezpečnostně technické charakteristické hodnoty nebezpečných látek, Svaz požární ochrany ČSSR,
1. vydání, Praha 1990
POŽÁRNĚ TECHNICKÉ CHARAKTERISTIKY ZEMNÍHO PLYNU A ODORANTŮ

Tabulka 3 – Zemní plyn

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Hodnota/popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemická charakteristika</td>
<td>směs metanu, vyšších uhlovodíků, oxidu uhličitého a dusíku</td>
</tr>
<tr>
<td>složení</td>
<td>hlavní složka metan cca 98 % obj.</td>
</tr>
<tr>
<td>sumární vzorec hlavní složky</td>
<td>CH₄</td>
</tr>
<tr>
<td>skupenství (při 20 °C, 101,325 kPa)</td>
<td>plynné</td>
</tr>
<tr>
<td>hustota (při 0 °C, 101,325 kPa)</td>
<td>0,733 kg/m³</td>
</tr>
<tr>
<td>relativní hustota</td>
<td>0,56 až 0,70</td>
</tr>
<tr>
<td>teplota tání</td>
<td>–182,5 °C</td>
</tr>
<tr>
<td>teplota varu</td>
<td>–161,6 °C</td>
</tr>
<tr>
<td>teplota vznícení</td>
<td>+537 °C</td>
</tr>
<tr>
<td>dolní mez výbušnosti (DMV)</td>
<td>5 % obj.</td>
</tr>
<tr>
<td>horní mez výbušnosti (HMV)</td>
<td>15 % obj.</td>
</tr>
<tr>
<td>min. zápalná energie (při 8,5 % obj.)</td>
<td>0,28 mJ</td>
</tr>
<tr>
<td>teplotní třída</td>
<td>T1</td>
</tr>
<tr>
<td>maximální experimentální bezpečná spára (MESG)</td>
<td>1,14 mm (metan)</td>
</tr>
<tr>
<td>skupina výbušnosti</td>
<td>IIA (pokud neobsahuje více než 15 % obj. vodíku – viz 4.6 ČSN IEC 79-20)</td>
</tr>
<tr>
<td>hořlavost</td>
<td>extrémně hořlavý (R12)</td>
</tr>
<tr>
<td>vhodná hasiva</td>
<td>rozříštěný vodní proud, vodní mlha, prášky A–B–C–D–E nebo B–C–E, halony jako aerosol, dusík nebo oxid uhličitý, střední pěna</td>
</tr>
</tbody>
</table>

Tabulka 4 – Odorant směsný merkaptan

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Hodnota/popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemická charakteristika</td>
<td>směs terciárního butylmerkaptanu (BTM) a dimetylsulfidu (DMS)</td>
</tr>
<tr>
<td>složení</td>
<td>63 – 67 % BTM a 33 – 37 % DMS</td>
</tr>
<tr>
<td>sumární vzorec</td>
<td>TBM: C₄H₁₀S DMS: C₂H₆S</td>
</tr>
<tr>
<td>skupenství (při 20 °C, 101,325 kPa)</td>
<td>kapalné</td>
</tr>
<tr>
<td>barva</td>
<td>bezbarvý</td>
</tr>
<tr>
<td>zápach</td>
<td>štiplavý</td>
</tr>
<tr>
<td>hustota (při 0 °C, 101,325 kPa)</td>
<td>819,6 kg/m³</td>
</tr>
<tr>
<td>relativní hustota při 15,6 °C vztažená na vodu 4 °C</td>
<td>0,822</td>
</tr>
<tr>
<td>teplota tání</td>
<td>– 45,6 °C</td>
</tr>
<tr>
<td>teplota varu</td>
<td>+42,2 – 93,3 °C</td>
</tr>
<tr>
<td>rozpustnost ve vodě</td>
<td>mírně rozpustný</td>
</tr>
<tr>
<td>teplota vznícení</td>
<td>+238 °C</td>
</tr>
<tr>
<td>bod vzplanutí</td>
<td>–18 °C</td>
</tr>
<tr>
<td>dolní mez výbušnosti (DMV)</td>
<td>2,2 % obj.</td>
</tr>
<tr>
<td>horní mez výbušnosti (HMV)</td>
<td>19,7 % obj.</td>
</tr>
<tr>
<td>hořlavost</td>
<td>vysoce hořlavý (R11)</td>
</tr>
<tr>
<td>vhodná hasiva</td>
<td>pěna, suchý prášek, CO₂</td>
</tr>
</tbody>
</table>
Tabulka 5 – Odorant tetrahydrothiofen (THT)

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Hodnota/popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemická charakteristika</td>
<td>tetrahydrothiofen</td>
</tr>
<tr>
<td>sumární vzorec</td>
<td>C₄H₈S</td>
</tr>
<tr>
<td>koncentrace</td>
<td>99 – 99,5 %</td>
</tr>
<tr>
<td>skupenství (při 20 °C, 101,325 kPa)</td>
<td>kapalné</td>
</tr>
<tr>
<td>barva</td>
<td>bezbarvý</td>
</tr>
<tr>
<td>zápach</td>
<td>štiplavý</td>
</tr>
<tr>
<td>hustota (při 0 °C, 101,325 kPa)</td>
<td>1000 kg/m³</td>
</tr>
<tr>
<td>relativní hustota při 20 °C vztažená na vodu 4 °C</td>
<td>0,997 - 0,999</td>
</tr>
<tr>
<td>teplota tání</td>
<td>– 96 °C</td>
</tr>
<tr>
<td>teplota varu</td>
<td>+ 119 až +121 °C</td>
</tr>
<tr>
<td>rozpustnost ve vodě</td>
<td>mírně rozpustný</td>
</tr>
<tr>
<td>bod vzplanutí</td>
<td>-13 °C</td>
</tr>
<tr>
<td>teplota vznícení</td>
<td>+200 °C</td>
</tr>
<tr>
<td>dolní mez výbušnosti (DMV)</td>
<td>1,1 % obj.</td>
</tr>
<tr>
<td>horní mez výbušnosti (HMV)</td>
<td>12,3 % obj.</td>
</tr>
<tr>
<td>min. zápalná energie (při 8,5 % obj.)</td>
<td>0,28 mJ</td>
</tr>
<tr>
<td>teplotní třída</td>
<td>T3</td>
</tr>
<tr>
<td>maximální experimentální bezpečná spára (MESG)</td>
<td>0,99 mm</td>
</tr>
<tr>
<td>skupina výbušnosti</td>
<td>IIA</td>
</tr>
<tr>
<td>hořlavost</td>
<td>vysoce hořlavý (R11)</td>
</tr>
<tr>
<td>vhodná hasiva</td>
<td>pěna, suchý prášek, CO₂</td>
</tr>
</tbody>
</table>

Tabulka 6 – Odorant Gasodor S-free

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Hodnota/popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemická charakteristika</td>
<td>směs etylakrylátu (EA), metylakrylátu (MA) a 2-etyl-3-metylpyrazín (EMP)</td>
</tr>
<tr>
<td>složení</td>
<td>50 – 100 % EA, 25 – 50% MA, 1 – 5 % EMP</td>
</tr>
<tr>
<td>sumární vzorec</td>
<td>C₅H₈O₂, C₄H₆O₂, C₇H₁₀N₂</td>
</tr>
<tr>
<td>skupenství (při 20 °C, 101,325 kPa)</td>
<td>kapalné</td>
</tr>
<tr>
<td>barva</td>
<td>bezbarvý až načervenale hnědavý</td>
</tr>
<tr>
<td>zápach</td>
<td>charakteristický</td>
</tr>
<tr>
<td>relativní hustota při 20 °C vztažená k vodě 4 °C</td>
<td>0,93 – 0,94</td>
</tr>
<tr>
<td>rozpustnost ve vodě</td>
<td>nemísitelná látka</td>
</tr>
<tr>
<td>teplota tání</td>
<td>nestanovena</td>
</tr>
<tr>
<td>teplota vznícení</td>
<td>+80 °C</td>
</tr>
<tr>
<td>teplota varu</td>
<td>+395 °C</td>
</tr>
<tr>
<td>bod vzplanutí</td>
<td>+5 °C</td>
</tr>
<tr>
<td>dolní mez výbušnosti (DMV)</td>
<td>1,6 % obj. při 120 °C</td>
</tr>
<tr>
<td>horní mez výbušnosti (HMV)</td>
<td>23 % obj. při 120 °C</td>
</tr>
<tr>
<td>hořlavost</td>
<td>vysoce hořlavý (R11)</td>
</tr>
<tr>
<td>vhodná hasiva</td>
<td>vodní mlha, pěna odolná proti alkoholu, suchý prášek, oxid uhličitý</td>
</tr>
</tbody>
</table>
ZÁSADY PRO STANOVENÍ ZÓN NA PRACOVIŠTÍCH

1 Klasifikace prostorů s nebezpečím výbuchu (zón) na pracovištích

Určování prostorů s nebezpečím výbuchu se provádí na základě pravděpodobnosti vzniku výbušné plynné atmosféry podle definic zón 0, 1 a 2 za účelem zajištění bezpečnosti technologií a pracovišť, usnadnění výběru elektrických a neelektrických zařízení a přijetí ochranných a organizačních opatření pro zajištění bezpečnosti obsluhy na pracovištích. Určování prostorů s nebezpečím výbuchu se provádí podle ČSN EN 60079-10-1 ed. 2, resp. TNI 33 2320.

Definice zón jsou uvedeny v 6.1.

Při stanovení zón se posuzují zdroje úniku hořlavé látky, resp. pravděpodobnost jejího výskytu. Například se posuzují spoje potrubí, zda se jedná o trvale technicky těsné spoje nebo technicky těsné spoje.

Při zařazování do zón v prostorách, kde je více zdrojů úniku hořlavé látky, se doporučuje dodržovat dále uvedená pravidla:
- pokud mezi zónami s nebezpečím výbuchu vzniknou mezery menší než 1,5 m, mají být zóny spojeny tak, aby mezi ními nebyl žádný prostor bez nebezpečí výbuchu;
- pokud je jako nebezpečný prostor zařazené více než 40 % objemu uzavřené místnosti, má být nebezpečný prostor rozšířen na celou místnost;
- pokud průmět zón s nebezpečným prostorem do roviny podlahy zaujímá více než 75 % podlahové plochy, má být nebezpečný prostor rozšířen na celou místnost.

2 Značení vstupů do nebezpečných prostor

Místa vstupu do prostorů s nebezpečím výbuchu musí být označena bezpečnostními značkami výstrahy s černými písmeny „EX“ ve žlutém poli, označujícími „nebezpečí – výbušné prostředí“ (podle nařízení vlády č. 375/2017 Sb.). Dále se doporučuje umístění dalších značek, např. zákazy „Nepoňšenu do nebezpečí“ a „Zákaz výskytu otevřeného ohně“.

3 Vybavení zaměstnanců OOPP při práci v prostředí s nebezpečím výbuchu

Pokud se v prostorách, klasifikovaných jako zóna 0, zóna 1 a zóna 2, zasahuje do integrity zařízení, musí být zaměstnanci pracující v těchto prostorách vybavení OOPP minimálně v tomto rozsahu:
- pracovní oděv se sníženou hořlavostí (podle ČSN EN ISO 11612) a v antistatické úpravě;
- pracovní obuv v antistatické úpravě;
- další OOPP podle analýzy rizik, provedené v souladu se zákonem č. 262/2006 Sb.

Pokud se zasahuje do integrity zařízení na pracovištích podle kapitoly 4, musí být po celou dobu činnosti v provozu detektor, kterým bude sledována koncentrace hořlavé látky. Detektor musí být konstruován přípůsoben do výbušného prostředí s akustickou a optickou signalizací při překročení požadovaných hodnot DMV (např. 10%, 30 % a 100 % DMV) hořlavé látky ve vzduchu. V případě překročení stanovených hodnot DMV budou přijata příslušná opatření podle příkazu „V“, který musí být pro činnost v prostorách s nebezpečím výbuchu zpracován.

Za kontrolu dodržování stanovených vzdáleností v prostorách s nebezpečím výbuchu zodpovídá pověřený zaměstnanec zaměstnavatele, který zajistí jejich vyznačení a zároveň řídí režim činnosti v těchto prostorech.
VZOR PŘÍKAZU „V“

PŘÍKAZ „V“

příkaz k práci v prostředí s nebezpečím výbuchu

<table>
<thead>
<tr>
<th>Datum vydání příkazu „V“</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Platnost příkazu „V“ (datum, od – do)</td>
<td></td>
</tr>
</tbody>
</table>

Příkaz „V“ vypracoval a vydal

Vedoucí akce (zaměstnanec provozovatele) zodpovědný za předání Příkazu „V“ a pracoviště.

<table>
<thead>
<tr>
<th>Jméno, příjmení</th>
<th>Funkce</th>
<th>Podpis</th>
</tr>
</thead>
</table>

Příkaz „V“ a pracoviště převzal

Vedoucí práce (pracovník zhotovitele) zodpovědný za provedení práce, dozor nad výkonem práce, zajištění bezpečnostních opatření a převzetí příkazu „V“ a pracoviště.

<table>
<thead>
<tr>
<th>Jméno, příjmení</th>
<th>Zhotovitel</th>
<th>Podpis</th>
</tr>
</thead>
</table>

Název akce

<table>
<thead>
<tr>
<th>Druh práce</th>
<th>Pracoviště</th>
<th>Vedoucí práce (podpis)</th>
<th>Zahájení (datum, hodina)</th>
<th>Ukončení (datum, hodina)</th>
</tr>
</thead>
</table>

Jméno a příjmení osob, které budou práci vykonávat a jejich podpisy

Níže uvedené osoby podpíšeme stvrzují, že byly náležitě poučeny a seznámeny se způsobem zajišťování pracoviště a srozuměny se způsobem provedení práce. Podmínkám uvedeným v příkazu V“ rozumějí, budou je dodržovat a při výkonu činnosti podle tohoto příkazu uposlechnou pokyny vedoucího akce nebo vedoucího práce. Dále stvrzují, že byly také náležitě poučeny a seznámeny se způsobem zajištění pracoviště, s riziky, s únikovými cestami, s bezpečnostním značením, s místem pro vypnutí přívodu médií a budou během práce dodržovat právní předpisy, vztahující se k práci jimi vykonávané a dodržovat ostatní předpisy vztahující se k práci jimi vykonávané, včetně vnitřních předpisů společnosti.

<table>
<thead>
<tr>
<th>Jméno a příjmení</th>
<th>Prováděná činnost</th>
<th>Podpis</th>
</tr>
</thead>
</table>

Platnost od
<table>
<thead>
<tr>
<th>Jméno a příjmení</th>
<th>Prováděná činnost</th>
<th>Podpis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pokyny k zajištění pracoviště k ochraně před vznikem výbušné atmosféry, popřípadě k jeho uvedení do původního stavu

Odkaz na předem vypracovaný pracovní postup, včetně typových postupů, povolení. Vytyčení podzemních zařízení, nastavení armatur, zajištění el. zařízení.

Použité technické postupy k zajištění pracoviště k ochraně před vznikem výbušné atmosféry:

Opatření k zajištění bezpečnosti a ochrany zdraví při práci, která musí být provedena před zahájením práce

Pokud budou prováděny práce podle vyhl. č. 87/2000 Sb., musí zhotovitel vystavit „Povolení pro práce s otevřeným ohněm vč. min vybavení PO“, ve kterém budou uvedena požárně bezpečnostní opatření.

Za výběr a použití OOPP odpovídá vedoucí práce. OOPP musí odpovídat rizikům z prováděných činností a prostředí

Kontrola koncentrace zemního plynu detekčním přístrojem:
PM-4, SR-4, jiné ..
- před zahájením prací
- v intervalech v průběhu prací
- nepřetržitě po dobu provádění prací
Seznam a popis ochranných a zásahových prostředků pro případ zdolávání mimořádných událostí stanovil:

<table>
<thead>
<tr>
<th>Jméno, příjmení:</th>
<th>Podpis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Druh práce

Druh a velikost PHP

Pro výkon požárního dohledu určeno osob:

<table>
<thead>
<tr>
<th>Požární vodovod</th>
<th>SHZ</th>
<th>EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ano/ne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lékárnička (podle charakteru práce s ohledem na rizika)

Záznam o kontrole ovzduší na pracovišti:

<table>
<thead>
<tr>
<th>Osoba odpovědná za kontrolu ovzduší na pracovišti – záznam o provedené kontrole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jméno, příjmení</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Komentář k průběhu prací, přerušení prací (datum, hodina), zjištěné závady, jejich řešení apod.

Za přerušení práce se nepovažují technologické pauzy, přestávky mezi směnami, dny pracovního volna a klidu.